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An investigation is made of resonant triads of Tollmien-Schlichting waves in an 
unstable boundary layer. The triads considered are those comprising a two- 
dimensional wave and two oblique waves propagating a t  equal and opposite 
angles to the flow direction and such that all three waves have the same phase 
velocity in the downstream direction. For such a resonant triad remarkably 
powerful wave interations take place, which may cause a continuous and rapid 
transfer of energy from the primary shear flow to the disturbance. It appears 
that the oblique waves can grow particularly rapidly and it is suggested that 
such preferential growth may be responsible for the rapid development of three- 
dimensionality in unstable boundary layers. The non-linear energy transfer 
primarily takes place in the vicinity of the critical layer where the downstream 
propagation velocity of the waves equals the velocity of the primary flow. 

The theoretical analysis is initially carried out for a general primary velocity 
profile; then, in order to demonstrate the essential features of the results, precise 
interaction equations are derived for a particular profile consisting of a layer of 
constant shear bounded by a uniform flow. Some exact solutions of the general 
interaction equations are presented, one of which has the property that the 
wave amplitudes become indefinitely large at a finite time. The possible relevance 
of the present theoretical model to the experiments of Klebanoff, Tidstrom & 
Sargent (1962) is examined. 

1. Introduction 
The experiments of Klebanoff & Tidstrom (1959) and Klebanoff et at!. (1962) 

on the development of three-dimensionality in unstable boundary layers have 
established the existence of variations, in both the mean and fluctuating velocity 
components, which are periodic in the spanwise direction and which grow in 
intensity with distance downstream. In these experiments the spanwise periodi- 
city was in most cases fixed by creating an artificial disturbance with a small 
spanwise variation in amplitude. However the development of a similar, but 
less regularly spaced, spanwise structure was also observed for natural transition: 
accordingly, the growth of such spanwise variations appears to be a consistent 
and significant feature of the developing instability. 

The cuiTent state of knowledge of boundary-layer transition is admirably 
reviewed by Tani (1969). The most successful theoretical attempts to model the 
observed growth of three-dimensionality are those of Benney & Lin (1960) and 
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Benney (1961, 1964). They consider the second-order non-linear interaction of a 
two-dimensional Tollmien-Schlichting wave and a three-dimensional wave with 
spanwise periodicity (such as is produced by two plane Tollmien-Schlichting 
waves propagating a t  equal and opposite angles to the flow direction). They find 
that this interaction promotes the growth of a secondary system of spanwise- 
periodic longitudinal vortices which are qualitatively similar to those reported 
by Klebanoff et al. Also, the observed tendency for the periodicity of these 
vortices to halve as the velocity fluctuations increase in amplitude is reproduced 
by the Lin-Benney model. 

However the Lin-Benney model is incomplete in some important respects. 
First, it  has been pointed out (Stuart 1962a, b )  that, according to linear theory, 
the frequency of Tollmien-Schlichting waves depends upon wave-number in 
such a way that the two- and three-dimensional waves of the Lin-Benney model 
cannot be coupled in phase, contrary to assumption, but that their frequencies 
may differ by as much as 15 yo. This criticism is considered further in $2. 

Another shortcoming of the Lin-Benney theory is that it  furnishes no estimate 
of a preferred spanwise periodicity; for, by choosing the periodicity of the three- 
dimensional wave, any desired spacing can be generated. While such a choice 
may appropriately represent an artificially induced disturbance with built-in 
spanwise periodicity, the Lin-Benney model cannot determine whether there 
are three-dimensional disturbances which are particularly susceptible to 
amplification. 

The present paper concerns a non-linear mechanism which may favour the 
selective growth of such three-dimensional disturbances. This mechanism turns 
out to  be a remarkably strong one, involving resonant interactions among a 
suitable triad of Tollmien-Schlichting waves. Previous theoretical investigations 
into the possibility of such resonance have been made by Raetz (1959,1964) and 
Stuart (1962b); however, in these, the occurrence of resonance was established 
only for certain triads of waves which are neutrally stable according to linear 
theory. The restriction of the analysis to such special cases results in the exclusion 
of the much stronger resonance mechanism revealed in the present paper. 

There have been numerous studies of resonant wave interactions in the absence 
of a primary shear flow, the most general of which is that of Simmons (1969). 
Such interactions result in an exchange of energy among the participating waves 
such that the total wave energy is conserved. However, investigations of resonant 
wave interactions in shear flows by Kelly (1968) and Craik (1968) have established 
that, in addition to the interchange of energy among the wave components owing 
to their interaction, a transfer of energy from the primary shear flow to the 
disturbance (or vice versa) may also occur. The energy-transfer mechanism 
described by Craik (1968) for a resonant triad of gravity waves in a uniform 
shear flow is shown in the present paper to operate among a triad of Tollmien- 
Schlichting waves in a boundary layer. As in Craik’s previous work, the three- 
dimensionality of the waves is an essential feature of the mechanism. The (non- 
linear) exchange of energy between the primary shear flow and the waves is 
found to take place in the vicinity of the critical layer where the fluid velocity 
equals the downstream propagation velocity of the waves. 
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In  3 2 the possibility of such resonance among Tollmien-Schlichting waves is 
examined using data for the Blasius boundary-layer profile kindly supplied by 
Dr R. Jordinson of Edinburgh University. The non-linear analysis of the reso- 
nant interactions is developed in $9 3 and 4 for a general boundary-layer profile 
U ( z ) ,  and the illustrative case of the particular (dimensionless) boundary-layer 
profile U = x(0 < z < I), E = 1( 1 < z < 00) is examined in $ 5. The approximations 
are discussed in $6  and some exact solutions of the non-linear equations for the 
wave amplitudes are derived in $ 7. Finally, the possible relevance of the present 
analysis to the experiments of Klebanoff et al. is discussed in $8. 

2. The possibility of resonance 
We consider small perturbations of a laminar boundary layer flowing in the 

x direction and which, locally, may be regarded as a function E(z )  of the distance 
z normal to a plane rigid boundary situated a t  z = 0. The perturbations may 
depend on x, z, the spanwise co-ordinate y and-the time t .  They are assumed to 
consist of an assemblage of Tollmien-Schlichting waves with velocity components 
of the form Re{f(z) exp i(ax +py - act)}, where c = c, I- ic, is the complex wave 
velocity in the x direction and the wave-number components a, p are real. All 
quantities are regarded as having been made dimensionless relative to the free- 
stream velocity V and densityp of the fluid and the thickness 6 of the boundary 
layer. The appropriate functions f ( z )  and the complex eigenvalue relationship 
c = c(a, p, R) are obtained by solution of the linearized equations and depend on 
the Reynolds number R = V&/v, where v is the kinematic viscosity. 

We here examine the results of linearized theory to establish whether three 
waves with respective x, y, t dependence of the form expi(a'x-a'c't) and 
expi(ax+py-act) may comprise a resonant triad: that is, we consider a two- 
dimensional wave and two oblique waves propagating at  equal and opposite 
angles to the z direction. Clearly, resonance occurs a t  second order only if 
a' = 2a and c i  = c,, and choosing a' equal to 2a reduces the problem to a search 
for values of a and p at given R such that c,(a, /I, R) = c,(2a, 0, R). (Note that 
for resonance only the real parts of c and c' must be equal since the imaginary 
parts relate to the growth or decay of the waves.) 

The reasons for seeking resonance among waves of this particular form are 
twofold. First, the work of Craik (1968) has established that resonant triads of 
this type may interact in a particularly powerful manner owing to the fact that 
the critical layers for the three waves coincide. (This point is discussed further 
in 9 8.) Second, such a mechanism might lead to the selective amplification of a 
particular pair of oblique waves which would subsequently impart a preferred 
spanwise periodicity to the flow by interaction of the Lin-Benney type. 

The relevant information for determining criteria for resonance is contained 
in the results of linear stability theory for two-dimensional disturbances; for the 
Squire transformation readily yields the result 

c(a, p, R)  = C ( Y , O ,  ZRlY),  Y = (a2 + p2)4 
which expresses the complex wave velocity (in the x direction) of a 
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three-dimensional disturbance in terms of that for a two-dimensional disturbance 
at lower Reynolds number. Such data for two-dimensional waves in the Blasius 
boundary layer, obtained by numerical solution of the Orr-Sommerfeld equation, 
were kindly supplied to the author by Dr R. Jordinson. These may be con- 
veniently displayed as curves of a! against R and cr against R for various constant 
values of ci, some of which are shown in figure 1. For these results, 6 is taken as 
the displacement thickness in the definition of R. Similar curves have been 
published by Kaplan (1964) and Wazzan, Okamura & Smith (1966) (see also 
Betchov & Criminale 1967, p. 90). 
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FIGURE. 1 Curves of constant ci for the Blasius boundary layer. 

The presentation of the corresponding results for three-dimensional distur- 
bances follows that of Watson (1960) and Betchov & Criminale (1967, p. 115) 
and takes the form of curves of constant c, and c, at given R on a diagram with 
the wave-number components a and ~3 as co-ordinates. Such curves, deduced 
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from figure 1 by means of the Squire transformation, are shown in figure 2 for 
R = 882. Similar curves are given by Betchov & Criminale, but only for positive 
values of c,. The curves of constant c, and ci are of course symmetrical about the 
axis p = 0: for convenience those of constant c, are shown only for p 2 0 and 
those of constant ci for p 6 0. This set of curves for R = 882 is sufficient to 
demonstrate the existence of resonant triads of Tollmien-Schlichting waves at 
this Reynolds number. At other Reynolds numbers similar results will hold. 
The wave with a = 0.254, /3 = 0 has the greatest value of c,, e'qual to 0.01; this 
is close to the most unstable disturbance at  R = 882. (The most unstable dis- 
turbance is actually that for which aci is a maximum, but the difference is not 
large.) Consideration of the curve of constant wave velocity c,, = 0.357, which 
passes through the point a = 0-254, /3 = 0, confirms that the waves of the Lin- 
Benney mechanism cannot be coupled in phase since no three-dimensional wave 
with a = 0.254 and p non-zero lies on this curve. 
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P 
FIGURE 2. Curves of constant c, and ci for three-dimensional disturbances with wave- 
number components (a, p)  at  R = 882. The curves of constant ct are shown only for 
p < 0 and those of constant c, for /3 3 0. Both curves are symmetrical about /3 = 0. The 
arrows designate resonant wave triads. 

However, this criticism of the Lin-Benney mechanism is not as serious as it 
might seem. Those disturbances which are coupled in phase with the two- 
dimensional wave with a = 0.254 are represented on figure 2 by the curve 
ac, = 0.095 and it is seen that this curve 'bends' much less than that for constant 
c,.. Accordingly, interaction between the two-dimensional wave and any three- 
dimensional wave represented by a point on this line will produce secondary 
longitudinal-vortex flows inclined at  only a small angle to the 5 direction. The 
addition of two such secondary flows, deriving from the interaction of the two- 
dimensional wave with either of two oblique waves of equal amplitude and 
propagating at  equal and opposite angles to the x direction, gives rise to a 
longitudinal-vortex flow with a small spatial periodicity in the x direction. 
(Such a suggestion was put forward by Benney (1964).) It is unlikely that this 
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small periodicity would be detected experimentally within a distance of only a 
few wavelengths. 

It seems therefore that modification of the Lin-Benney model along these 
lines would ensure that the participating waves are coupled in phase. It is also 
possible, as was suggested by Klebanoff et al., that synchronization of the waves 
might be brought about by non-linear effects, but such an explanation is in- 
consistent with the Lin-Benney quasi-linearization procedure. 

The existence bf resonance of the desired form is readily verified from figure 2 
in the following way. Consider a two-dimensional wave of given wave-number 
a, and phase speed c, and follow on the a-/3 diagram the curve on which c, takes 
this constant value. If there is a point (a,/3) on this line for which a = *a, the 
waves represented by this point and the corresponding point (a, - p )  form a 
resonant triad with the given two-dimensional wave. 

Two such triads which may have particular physical significance are shown in 
figure 2. For the first of these the two-dimensional wave is that with a, = 0,254, 
which is close to the most unstable disturbance and which is therefore likely to 
be the largest disturbance present during the initial stages of natural transition. 
It is readily seen that the points a: = 0.127, 0.148 lie a t  the intersection 
of the appropriate curve of constant c, and the line a = +a,. Consequently the 
two oblique waves a = 0.127, /3 = f 0.148 complete the resonant triad. The 
wave-number vector diagram for this triad, which is in the form of an isosceles 
triangle, is indicated by arrows on figure 2. 

For the second triad the two-dimensional wave was chosen with frequency 
exactly twice that of the wave with a, = 0.254, /3 = 0 with the result that the 
resonating oblique waves have the same frequency as the latter wave. The 
resonant triad of wave-numbers (a,/3) in this case is (0.46, 0), (0.23, 0.23), 
(0.23, - 0.23), and the corresponding wave-number vector diagram is also shown 
in figure 2. Assuming that resonant interactions among this triad result in pre- 
ferential amplification of the two oblique waves - which is verified in $7 - and 
that the largest two-dimensional wave present is the (linearly most unstable) 
wave with a = 0.254, we see that these three waves of the same frequency may 
then interact in the Lin-Benney manner to impart a definite spanwise periodicity 
to the flow. Further discussion of these ideas and of their possible significance 
in the experiments by Klebanoff et al. is delayed until $8 by which stage the 
nature of the resonant interaction will have been clarified. 

It is clear that a t  any given Reynolds number resonant triads of Tollmien- 
Schlichting waves may always be found by applying the above procedure. 

= 

3. Non-linear analysis 

dimensional wave defined by the perturbation stream function 
We first consider perturbations of a primary shear flow Z ( z )  by a two- 

$, = Re($,(z)A,(t)exp [ia(x-ct)]), c = c,+ic,, 

with associated velocity perturbations 

PL, = q5, (2) A,exp [ia(x - c t ) ] ,  w, = - i ~ q 5 ~  ( z )  A,  exp [ia(x - c t ) ]  
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in the x and z directions respectively. Henceforth the real parts are taken to 
represent physical quantities and the dash denotes differentiation with respect 
to  z. Here, A,  is a measure of the wave amplitude which will be constant according 
to linear theory but which will be a slowly varying function of time t when non- 
linear interactions are considered. 

Similarly, we consider two plane waves propagating at  equal and opposite 
angles to the x direction with velocity components (ul, vl, wl), (u2, v2, w2) re- 
spectively in the x,  y and z directions and with x,  y ,  t dependence of the form 
exp [i($ax 4 Py - &aEt)]. It is readily shown (cf. Craik 1968) that 

YU, 2 = W l ,  2 T pa, 2, yv1, 2 = k PGl, 2 + &a%,,, y = (t.2 + P2)4 

where upper and lower signs refer to waves 1 and 2 respectively and Q1, 2, 01, are 
the velocity components in the directions 9,,, Ql,2 defined by 

I'%* 2 = &ax 5 py, y&, 2 = T px + &.y . 
Also, from the appropriate equations of continuity it is seen that Gl, and wl, 
may be expressed in terms of the perturbation stream functions 

$-1,2 = Re(~,,,(z)A,,,(t)exp [i(+ax+Py-+aB)]), c" = Er+iEi 

as %,2 = $;,2(+41,2exP [ i (8~XkPY -BWl, 
w1,2 = iy575l,2(+41,2exp [i(iiax-IPY-S(wl. 

The linearized vorticity equations for these perturbations are 

J?& [$,I ia[(u - C) (4: - a'$,) - z"$3] - R-'(& - 2a2$," + = 0, (3.1 a, b )  

&,2[A,2I  3 8iaC(e-z) (&,2-y241,2) -U"A,21 - R - l ( ~ 2 - - - 2 y 2 ~ ; , 2 + ~ ' ~ 1 , 2 )  = 0,  

and the linearized momentum equations in the Q1, directions yield 

[+ia(U-c") -R-'(a2/az2-y2)] a1,2 = T ie'p$151,2. (3.2) 

$i(0) = # ; ( O )  = 0, $1,$1+0 (Z+OO) (i = 1,2,3)  (3.3) 

The solution of (3.1 a, b)  subject to the boundary conditions 

is assumed to be known from linear stability theory. 
Proceeding to consider the effect of resonant interactions among these waves 

when c,, = E,,, we may write the non-linear vorticity equations corresponding to 
those above as 

A,@) L, [A1 = - @A,/& (G - .2v53) + F3, 

~ 1 , 2 ( t ) ~ 1 , 2 [ $ 1 , 2 1  = - (dAl,,/dt) (#;,2-r2$1,2) +F1,2> 

where F3exp [ia(x - ct) ]  = - (u . Vw) - - (U . Vu) , [L az a 1, 
a 

[% a2 
(u .Vw) - 7-1- {u. V(&au 5- pv)}] a 

1 9 2  

Fl, exp [i(&ax -I Py - QaEt)] = 

represent the second-order contributions of appropriate periodicity deriving 
from the non-linear inertia terms of the equations of motion. 
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Fly .B2, and F3 may be evaluated to the required order using the estimates of 
linear theory for u, v and w. Also, since the rates of change in amplitude IdAi/dtI 
are assumed small compared with lacA,l, the terms (4: - ~1~4~) and (q;,2 - y241,2) 
on the right-hand sides of ( 3 . 4 ~ ~  b )  may be evaluated from linear theory bo the 
same order. After some reduction the Fi are found to be 

F3 = t i a A 1 A 2  exp [4G - Ci) tl [41 (9% - r2#2) + 4 2  (q; - Y241)1’ 
- (a2 - 2Y2) r-“4I (9% - Y2#2) + 4; (#; - r”1)l 

+ 2Pa-l[4,@2 - 42%1”}, (3.5a) 

+ (a”3y2)Y--24;(41*”-y2#T)-2#T’(#~-a2#3)-#T(#:-a”3)’ 

-2apy-2[@2(#;-y2$1) -@l($g-ya42) + (#i@;-&f()] +4p2r-2(s1c2)’ 

Fz = &&4,AT exp [acit]((a2-2yZ)y-2$,(4~”-y24T)’ 

- 20~Py-~(#~@T’~ +#;af t  + Y ~ # ~ @ ? ) } ,  (3.5b) 

Fl = $iaA,A;exp [ ~ ~ ~ t ] ( ( C C 2 - 2 2 y 2 ) ~ - ~ # ~ ( # ~ ” - y 2 # : ) ’  

+ (a2- 3y2) y24; ($2*”-y2$2*) - 24;’ ($5; - a243) - 4: (4: - aZq53)’ 

+ zapy-2(#,@;” + $;a:’ +y”3a;)). (3.5c) 

In  these expressions the asterisk denotes complex conjugates which arise owing 
to the multiplication rule Re{A) Re(B} = 4 Re{AB +All*).  

The homogeneous boundary conditions (3.3) are also applicable to the second- 
order equations (3.4a, b).  Accordingly, in order that non-trivial solutions of these 
equations may exist, it is necessary that their right-hand sides - evaluated by 
linear theory - be orthogonal to the solutions of the associated adjoint homo- 
geneous equations (see Ince 1956, $9.34) which satisfy the same homogeneous 
boundary conditions. These adjoint equations are simply the adjoint Orr- 
Sommerfeld equations 

[ ( E -  C) $3]N - $(u- C) - u’~$~  - (i~&)-1($:~ - 2 ~ 2 f ;  + a4$3) = 0, (3.cia) 

[(U - c“) $1,21” - Y2(u. - c“) 91,2 - U”$l, 2 - (tiaW1(K2 - 2Y2f;, 2 + r“ $l,2) = 0, 
(3.6b) 

which are discussed in some detail by Reid (1965). Assuming that we know the 
solutions $1,2 and $3 of these equations which satisfy the appropriate homo- 
geneous boundary conditions, the orthogonality conditions necessary for the 
existence of solutions of the second-order equations become 

where all the integrands may be evaluated from linear theory using the solutions 
of equations ( 3 . 1 ~ ~  b ) ,  (3.2) and (3.6a, 6 ) .  
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4. Asymptotic theory for large aR 
The integrals occurring in (3.7a, b)  may be evaluated by computer if precise 

results are required for a given velocity profile. However in the present paper 
approximate estimates of these integrals are derived using the results of asymp- 
totic stability theory a t  large Reynolds numbers. In  view of the agreement 
between such asymptotic linear stability theory and experiment (see Shen 1954; 
Ross et at. 1970) even at  Reynolds numbers as low as 500 for the Blasius boundary 
layer the present use of this approximation seems reasonable. Such an approach 
has the additional benefit of demonstrating the powerful contribution to the 
interaction integrals of (3.7b) which derives from the vicinity of the critical 
layer. Subsequent consideration of these results in 0 8 will show that the particular 
class of resonant triads examined comprises those most susceptible to rapid 
amplification. 

At sufficiently large Reynolds numbers, the linear solutions 

4i7 $i ,  '1,s (i = ' 9  27 3, 
may be adequatelyrepresented by inviscid estimates except close to the boundary 
z = 0 and near the ' critical layer ' where the velocity of the primary flow equals 
the phase velocity c, of the waves. In  the latter case the inviscid solutions nor- 
mally become singular at the point z, in the complex z plane where G(z,) = c 
and, since ci is small, this singularity lies close to the real axis. It is also known 
from linear theory that the inviscid solutions for q5i, $i and GI, are valid asymp- 
totic approximations in the region of the complex z plane for which 

- f n  < arg (z  - z,) < Qn, 
excluding a small circle of radius O{(aR)-*) with centre at  z,. 

Clearly the inviscid estimates of the integrand occurring in (3.7~3, b)  are also 
usually singular at z, but, by using the last mentioned property of the inviscid 
solutions, the integrals of (3.7a) and those on the left-hand side of (3.7b) may 
be evaluated by deforming the path of integration to pass beneath the singularity 
at 2,. I n  particular we note that, since the inviscid estimates for q5< and $i are 
such that $3 = ('ii - c)-lQt3 and $rl, = (5 - C)-1q51, 2, the integrals on the left-hand 
sides of (3.7a, b )  may be expressed more simply BS 

where inviscid estimates for $i are used and the path of integration passes 
beneath the singularity at z,. 

However, as in the case examined by Craik (1968) this device cannot be used 
to evaluate the integrals on the right-hand side of (3.7b). These integrands 
involve not only d i ,  $i and Q 2  but also their complex conjugates and it is 
readily confirmed that the inviscid estimates of these complex-conjugate quan- 
tities are valid in the region of the complex z plane denoted by 

- 
26 

in < arg (z - z,) < &-. 
F L M  50 
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Accordingly it is not possible to deform the path of integration in such a way 
that the inviscid estimates of the integrand remain valid approximations. 
Instead, the path of integration must pass through the singularity at  zc and 
viscous theory must be employed to evaluate the integrands in the vicinity of 
the critical layer. 

The viscous solutions for q5d in the vicinity of the critical layer are well known 
to be expressible in terms of the Airy function with 

2 = i(&&i@(Z - 2,) (4.2) 

as the independent variable (see for example Reid 1965), but the viscous solu- 
tions for $l,z are less familiar and are now derived in more detail. 

Near z, it is easily shown that, to highest order in (all)*, the equation for $1,2 

becomes ’& (&+.) @1,2 = 0, 

together with boundary conditions which ensure that the viscous solution 
matches the inviscid solution away from the critical layer. On integrating twice 
we obtain the equation 

( - g + Z )  9 = - 1 ,  6 = B-1($l,2-A), 

where A and B are constants of integration. Also, a particular solution of this 
equation for which 3+2-1 as 2-t ico is the Lommel function L(2) (see 
Benney 1961, 1964; Craik 1968); and, in virtue of the matching conditions, the 
Airy function solutions of the homogeneous equation cannot contribute to 2. 

Accordingly 

Near z, the inviscid solutions for 

y?1,2 = A +BL(Z). 

have the form (see, for example, Reid 1965) 

N C,, { 1 + (z:/ii;) (z - z,) log (z - z,)} + O(z - z,), as z -+ z,. 

Therefore, since $1,2 = (Z-Z)-1q5L2 according to inviscid theory, the matching 
conditions for the above viscous solutions are 

$L2/Cl,2 N i($aR)hi;+Z-l+ (Zz/ZLz)log [ -i(+aRG;)-*Z], as 2-t 5 ioo 

and the corresponding solutions are 

$1,2/c1, 2 = i(*aR)*z;+L(Z) + O { ( E : / q )  log (aRG:)*}, (4.3) 

where Cl,2 denote the values of q51,2 (2,) given by inviscid theory. 
For 31,2 the inviscid approximation to (3.2) yields 

a,, = ( 2pE’/a(ii- c“)) q51,2, (4.4) 

which is usually singular at 2,. The corresponding viscous solutions for Bl,z in 
the vicinity of z, must satisfy - to highest order in (aR)* - the equation 

(d2/dZ2+Z)al,, = T (2iP/a) (&aRu;)+q51,2. 

al,2/Cl,2 = T (a;&) (*aRG:)*L(z) + o{(u’E/a;) log (aREL)*}. 

The appropriate solution is found to be (cf. Benney 1964, Craik 1968) 

(4.5) 
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It is easy to confmm that similar results hold for the complex-conjugate 
quantities +&, 6: but that L(2) is replaced by L( - 2) when 2 is a purely 
imaginary quantity. For example, the result corresponding to (4.5) is (cf. Craik 
1968) 

3: 2/C: = f (2i,!3/a) (&xRGL)*L( - 2) + O{(G:/iiA) log (aRt$)*}, (2 imaginary). 

(4.6) 

Use of the above results will allow evaluation of the integrals in (3.7a, b )  for 
particular boundary-layer profiles. Owing to the singular behaviour of the 
inviscid estimate of the integrand on the right-hand side of (3.75) and to the 
fact that the contour of integration cannot be deformed in a suitable manner to 
avoid this singularity, it  turns out that this integral is dominated by the con- 
tribution from the vicinity of the critical layer. However for the other integrals 
contributions from the whole range of integration may remain significant. 

Examination of expressions (3 .5b ,  c) for Fl,2 reveals that near zc the terms in 
q533rl are dominant. For the above results show that such terms are O{C,Ct laRUA} 
while the largest of the remainder are O{C3Cz @:/EL) (aREL)*log (aR@}, or 
perhaps 0(C3C.&(uR;iA)*) if Gz is small. Consequently, to highest order in (aR)*, 
we find that 

+ O(azC: (aR$)*log (aREL)*}], (4.7) 
on using the result (see Craik 1968, 4 7) 

We note that C, denotes the value of q5j (2,) given by inviscid theory. 
A remarkable feature of this result is that these interaction integrals are 

directly proportional to the Reynolds number R and are O(A, A: R) compared 
with an interaction integral for the two-dimensiond wave which is typically 
O(A,A,). This fact is best illustrated with reference to a particular velocity 
profile. 

5. A particular velocity profile 

order term in (4.7) a convenient profile is 
Since the curvature of the velocity profile does not crucially affect the highest 

(5.1) 
- u = z ( O < z < l ) ,  U = l  ( l < z < C o ) .  

Though physically unrealistic and yielding results for linear stability totally 
unlike those for the Blasius boundary layer it satisfactorily exhibits the non- 
linear features under discussion. From linear inviscid theory (Tietjens 1925), 

26-2 
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e--y sinh yz 
sinh y (0 < z < l), 

(1 < z ,< m), 

- a(E - c") 
91,2  = (U-c") $1.2 = + 2 p u ' v 1 , 2  = 

c = c  = 1 - 1  ,a-l(1---2a), C = Z r ; =  1 - 1  2y -1 ( 1 -e-"). 

The condition for resonance is satisfied when y = a: that is, when the oblique 
waves propagate at  angles of f in to the x direction. Indeed it is readily shown 
that whenever the wave velocities c and c" are determined by inviscid theory, a 
resonant triad of this type, comprising three wave-number vectors forming an 
equilateral triangle, must always exist. Henceforth we take y = a and p = & J3a. 

Results (4.1 a, b )  here give 

J $i(fli-a2$i)dz = -a2cosech2a (i = 1,2 ,3)  

and, on considering the viscous solutions near z = 0, it is easily shown that the 
viscous correction to this result is O{(aR)-t}. 

The highest order viscous correction to the complex phase velocity c is 
obtained by adding the term (1 +i) (2aR~,)-*e--~~ cosha (the factor of cosha was 
erroneously omitted by Tietjens). Therefore 

0 

ci = (S~Rc,.)-te-~" cosha, 
and result (4.7) yields 

to highest order in (aR)a, where c, and ci are known. 

tedious. After reduction it is found to be 
The evaluation of the interaction integral in ( 3 . 7 ~ )  is straightforward but 

jOmF3$3dt = AlA2exp[a(c"i-ci)t]a3cosech2a(A,-t-iA,), 

where 

A, = --&t2co~echa{$-#e-2a+$ea(1 -ae-"co~echa)-~ 

- a-l( 1 - ~)- le -~a(g  sinh a - # sinh 3a - 2 ea sinh2 a) + Qa-lc-l e-a sinha a 

- $[e3"C(Ei(3a( 1 - c)) + E1(3ac)) - e-3uC(Ei(3ac) + E1(3a( 1 - c))) 

- eac(Ei(a( 1 - c)) + E,(ac)) + e-ac( 1 +Qe24 sinh2 a) (Ei(ac) + &(a( 1 - c ) ) ) ] ) ,  

Ai = #a2 cosech a e-3a{cosh (3ac) - cosh (ac)  - Q ea(2-c) sinh2 a}, 

Ef-ci = (2aR~,)-*e-~~cosha(24- 1) .  

Here, P denotes the principal part and E,(r]), Ei(7) are tabdated functions 
(see Abramowitz & Stegun 1964). In  this case the interaction integral is complex 
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owing to the contribution of logarithmic terms on integrating under the singu- 
larity a t  z,. There is no explicit dependence on R, except in the expression for 
ci * - ci, and so, as mentioned above, the integral is of magnitude O(A,A,) 
compared with integrals of order O(A,A&R) for the oblique waves 1 and 2 .  

a-ldA,/dt = &+ini) A,A,exp[a(Ei - c i ) t ] ,  a-l(dA,,,/dt)iOA,A~,exp (ac,t), 

Equations (3.7a, b )  are therefore 

0 = 87 R~t-le-3~ cosech a sinh3 ac,, 

where A,., hi and c, are given above. It is convenient to re-express these results 
in terms of the dimensionless complex wave amplitudes ai (i = 1 , 2 , 3 )  defined as 

a,,,(t) = 2c;lA1,,(t) exp [&Git], a,@) = c;lA,(t) exp [mit]. 

Then the above equations become 

da,/d(at) = cia,+-&~Aa,a,, A = A,+iAi, 
dal,,/d(at) = &al,,+ +c:iOa,ag,. 

] (5.3% b)  

The most surprising feature of these results, as for those of Craik (1968), is 
the size of the interaction coefficient 101 for the oblique waves, which is O(R), 
compared with that of (A1 for the two-dimensional wave, which is O(1). This 
means that when the three a* are of comparable size the interaction terms 
affecting the oblique waves are an order of magnitude larger than that which 
influences the two-dimensional wave. The large magnitude of the former terms 
has been shown to derive wholly from the vicinity of the critical layer. Evidently, 
a remarkably strong non-linear energy-transfer mechanism operates in this 
region. The operation of this mechanism depends crucially on the three- 
dimensional character of the waves since the dominant contributions to the 
interaction integrals here derive from terms involving the ' cross-velocity ' 
components a:,, which are parallel to the respective wave crests. 

For more general velocity profiles which exhibit non-zero curvative at  the 
critical layer these remarks will remain valid; for, as indicated in $4, terms 
proportional to 2; in the interaction integrals for waves 1 and 2 are small com- 
pared with that retained above, provided the,Reynolds number is large enough. 
However for velocity profiles such that the phase velocity c, tends to zero as aR 
tends to infinity - but such that the asymptotic viscous analysis of $ 4  remains 
valid - there may be an additional implicit dependence on R through the quan- 
tities Ci of (4.7). At the present time the importance of this contribution to the 
interaction coefficients has not been evaluated, but it seems likely that the 
coefficients for the oblique waves will remain large. 

6. The approximations 
At this stage it is appropriate to make a more careful examination of the 

approximations underlying the analysis so far. The basic assumption that 
inviscid theory yields a valid first approximation over most of the flow field, 
and that asymptotic methods may be employed to develop viscous solutions 
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near z = 0 and xc, is valid provided (aR)) > 1. Also, the quasi-linearization 
procedure whereby non-linear terms are evaluated by means of linear theory is 
justified provided the respective wave amplitudes are sufficiently small. In  most 
non-linear analyses, the condition that the squares of the wave slopes should 
remain small - that is 1aui12 < 1 - is normally sufficient to ensure that the time 
scale associated with the non-linear modulation of the waves is large compared 
with the wave periods. However, in view of the remarkably strong non-linear 
interactions which affect the oblique waves, here we require Ola,l to be small 
compared with unity in order that this property is satisfied. The equivalent 
condition for the two-dimensional wave is IAa,a21/la,l < 1. These conditions, 
which may be rewritten as 

(ax) )  9 1, la,RI < 1,  [aia2I/la31 < 1, ( 6 . 1 ~ ~  b, c) 

define the range of validity of the present analysis. The second of these conditions 
is particularly severe for it requires the (dimensionless) amplitude of the two- 
dimensional wave to be o(B-l), and R is typically large. This restriction is a 
direct result of the strength of the non-linear mechanism since, with larger two- 
dimensional waves, the predicted time scale for the non-linear evolution of the 
oblique wSves is of comparable magnitude with the wave period. 

It is worth noting that the foregoing analysis for the particular profile (5.1) 
remains valid when the linear and non-linear terms on the right-hand sides of 
(5.3a, b)  are of comparable magnitude. This is so because lei\ and IEiiJ are 
O{(aR)4}, in virtue of result (5.2), and the estimates of linear theory used to 
evaluate the non-linear interaction terms are expressed in terms of the inviscid 
phase velocity c = c, to the required degree of accuracy. However in situations 
where (ci/c,I is not small the eigenfunctions 4, @ and 31,2 will depend significantly 
on ci as well as on c,, and it may be necessary to insist that the non-linear inter- 
action terms remain small compared with the linear growth terms in the equa- 
tions equivalent to (5.3a, b ) .  

The present theory neglects all third-order wave interactions such as those 
examined by Stuart (1962a, b )  and others. For the non-resonant case third- 
order interactions provide the largest non-linear terms in the interaction equa- 
tions; but here they are likely to be small compared with the second-order terms. 
For example, if the third-order interaction parameter is 0(1) it is sufficient to 
have 

laiaz%l % lA)-11%i14, I@I-11a~,z14- 

Recalling that 10 1 is O(R) and IAl is O( l), it  is readily shown that these conditions 
are satisfied in virtually all cases where the inequalities (6.1 a, b ,  c) hold. An 
exception is that where [all and (a2( are very small compared with (a3/ .  For this 
case the third-order terms in Ia,I3 should be retained in the equation for da,/dt - 
but not in those for cia,,,/& - until the growth of lull and la,\ brings about the 
dominance of the second-order term. Indeed, it would seem that when resonance 
can occur the validity of non-resonant third-order theories may be restricted to 
just this case. For, given a two-dimensional wave two initially small oblique 
waves completing the resonant triad may grow very rapidly and eventually 
dominate the third-order effects. 
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7. Some particular solutions 
Before going on to discuss the possible significance of the above results within 

the context of boundary-layer transition, it is worthwhile to consider in more 
general terms the behaviour of some solutions of interaction equations of the 
type (5.3a, b ) .  We consider the equations 

(7.1) 1 da,/dt = ca, + hula2, 

da,/dt = da, + ipu, a,*, da2/dt = da2 + ipa, a:, 

where c, d and p are real constants and h is complex. Equations (5.3a, b )  are 
of this form with 

c = aci, d = QaEi, h = $ac:A, p = 4ac;O. 

First, we note that when p $ Ihl , as it is above, and (T, d are sufficiently small, 
these equations may be approximated by 

du,/dt = 0, da,/dt = ipa,a,*, da,/dt = ipa,aT. 

These have the exact solution 

a3 = ‘40, 

a2 = %ocosh(Pl%o(t) +ia~o(~,o/Ia,ol)sinh(~~a,ol~), 

ai = aiocosh (LLla3olt) + ia~o(a~o/l%o\)sinh @1@30\t), 

where ale, a20, are constants. For this solution the two-dimensional wave has 
constant amplitude and (excluding the special case ~ a l o ~  = la201, a30/~u30~ = 
ialoa20/~a20/2) bothoblique waves ultimatelygrowlike exp ( p ~ a 3 0 ~ t ) .  It is seen from 
(6.1 a, b, c) that if 

(a@+ 9 1, C W - 4  Q la3,1R < 1, (lalol la201/la301)exp(Rla,lt) < 1, 

this approximation is appropriate for (5 .3a,  b)  (recall that Ed is O{(aR)-*}). 
Clearly therefore, the non-linear resonant interaction provides a mechanism for 
selective amplification of the pair of oblique waves, even in situations where 
such waves may be damped according to linear theory. 

Returning to the full equations (7.1), we see that the change of variables 

B, = ipa3, Bl, = pi I h I *al, ,, eis = ih/ I h 1, 

(7.2) I simplifies these to B3 = CrB, + eiBB, B,, 

B, = eB,+ B3B:, B, = aB,+ B,BT, 

where the dot notation has been introduced to denote differentiation with 
respect to t. Equations of this form for the case c = d = 0 have been discussed 
by Craik (1968, $9) who fouiid that, except when 19 = T ,  there always exist 
solutions for which the wave energy grows without bound. The reader is referred 
to  Craik’s paper for details. 

Here we consider some particular solutions of (7.2) with the aim of acquiring 
a further understanding of the role of non-linearity. We may write 

B, = e m t  b, eixs, B,, = eet b,, eixi, t ,  
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where b,, b,, b, are real and non-negative and xl, x,, x3, are the phases of the 
complex amplitudes (noting that the linearized equations have solutions with 
the bi and xi constant). Then the real and imaginary parts of the above three 
complex equations yield the six results 

b, = e(2”-u)tb, b, cos (0 - x), b1 = eutb3 b, cos x, b,  = eutb3 b, cos x, 1 
b3x3 = e(2”-u)tb,b,sin(0-x), b,xl = edb,b,sinX, b,x2 = e%,b,sinX,j (7.3) 

x = x3-x2-x1. 

The equations for xi may be combined to  give 

b,b,b,x = e(2”-u)t(blb,)2sin (I9-x)-eatb,2(b;+b:)sinx. 

It turns out that these equations have a very simple solution for a particular 
choice of initial values for b,, b,, b, and x at t = 0. 
Taking 

6-1 (0) = b2 (0) = [~o .~ /cosx ,  cos ( I 9  - x0)]+,  b, (0) = - C/COS x0, 
x(0 )  = xo, tan (0 - xo) cot xo = 3 / ~ ,  

it may be confirmed that the appropriate solution is 

b, = b, (0) e-at, x = xo, b, = b, (0) e-at, b, = b, (0) e-d. 

Accordingly we have 

B, = [ 2 a d / c o s ~ , c o s ( ~ - ~ , ) ] ~ e x p i [ ~ , ( ~ ) -  s- t tan~,] ,  
B, = [2ad/cos xo cos (0 - xo)]t exp i[xa (0) - ~t tan x,], 
B, = ( - 3/cos xo) exp i[x3 (0) - 23.t tan x,], 

where the initial phases satisfy 

x 3  (0) - x 2  (0) - Xl(0) = 20. 

For physically relevant solutions b,(O), b,(O) and b3(0 )  must be real and 
positive: it is therefore necessary for both 3-l cos 2, and a--1 cos (0 - x o )  to be 
negative. But from (7.4) we have 3-1cotx, = a-lcot (8-xo)  and it may be 
verified that, provided {(a+ a), cot2 8 + 4a5} > 0, there are four solutions for xo 
in the range 0 < xo < 2n, one of which satisfies both the above conditions. I n  
particular, there is always such a solution when a and E are of the same sign. 
The solutions (7.5) for the complex wave amplitudes B,, B,, B, are periodic in 
time and therefore represent purely periodic waves which undergo no temporal 
amplification or damping. Consequently, waves which according to linear theory 
are amplified or damped like exp (3.t) and exp (at) become neutrally stable for 
this non-linear case. 

Further particular solutions may be found for the case where a = 3 = 0, 
corresponding to  waves which are neutrally stable according to  linear theory. 
Equations (7.3) above then simplify to  

b,b, = b,b, = b,b,b,cosX, b,b, = blb2b3cos(8-X), 

b,b,b3x = (b,b,),sin ( 0 - 2 ) -  bz(b:+ bg)sinX. 
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When 8 = 7~ we have cos (8 - x) = - COB x, sin (8- x) = sinx and this set of equa- 
tions becomes a special case of that examined by Simmons (1969). For this case 
(b: + bg + 2332) remains constant, which means that the total wave energy is 
conserved. The reader is referred to Simmons’ paper for an exhaustive discussion 
of the solutions of this type. 

There exists a remarkably simple particular solution of (7.6) for arbitrary 6, 
which is of considerable interest. This is 

x = xo, tanx0 = +tan(8-xo), I 
cosxo * b b (7.7) 

b l = h 2 = [  cos (8 - x0) ] 1 - tb cos x0 ’ b 3 = 1 - t b c o s ~ o ~  

where b is an arbitrary positive constant and the physically relevant roots of the 
equation tan xo = 9 tan (0 - xo) are those for which cos xo/cos (6 - xo) is positive. 
Of the four roots of this equation in the range 0 < xo < 27r, two have the desired 
property. For one of these cosxo and cos ( O - x o )  are both positive and for the 
other both are negative. For the latter root, b,, b, and b, all decay as (1 +Kt)-l 
where K = blcosx,I is a positive constant. Consequently for this solution all 
three waves are damped owing to a net transfer of energy from the waves to the 
primary shear flow. In  contrast, the former root yields solutions which behave 
as (1  - Rt)-l where 0 < Kt < 1, and these attain indefinitely large amplitudes 
within the finite time t = (b cos x0)-l. The corresponding phases x,, xz and x3 are 
given by 

X1-X1(0) = X z - X z ( 0 )  = &(x3-x3(0)) = -tanxolog(1-tbcosxo), 

x3 ( 0 )  - x 2  (0 )  - Xl(0) = xo. 
As t approaches (b cos x0)-l for the root with cos xo positive, these phases also 
change rapidly. Consequently this solution is characterized by rapidly increasing 
amplitudes and frequencies as t nears b(cosxo)-l. It should be remembered that 
the equations (7.6) become invalid for sufficiently large amplitudes, when third 
and higher order terms become significant. However, this solution reveals the 
remarkable qualitative feature of an ‘explosion ’ in which the wave energy grows 
without bound in a finite time. A similar effect, but caused by third-order terms, 
has recently been found by Hocking, Stewartson & Stuart (1971). One is tempted 
to speculate - perhaps unwisely - that such a feature may have some connexion 
with the final rapid development of turbulence in boundary-layer transition but 
it should not be forgotten that the interaction equations themselves derive from 
the assumption that growth rates are small. 

8. Discussion 
The foregoing analysis has established the existence of a strong non-linear 

mechanism for the systematic exchange of energy between the primary shear 
flow and the disturbance. When a resonant wave triad exists the phases of the 
three waves may always be such that the wave energy increases continuously 
by extraction of energy from the shear flow. This energy exchange has been 
shown t.0 take place primarily in the vicinity of the critical layer, its effect being 
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such that the waves propagating obliquely to the flow direction will normally 
grow much more rapidly than the two-dimensional wave. This is due to the 
surprising fact (also found in the work of Craik (1968)) that the interaction 
coefficient 101 for the former waves is of order O(R), while the corresponding 
coefficient IAl for the two-dimensional wave is O( 1)  which is an order of magnitude 
smaller. This mechanism can therefore bring about the preferential amplification 
of three-dimensional disturbances. Also, the various particular solutions of the 
interaction equations examined in $7 reveal that this growth of three-dimension- 
ality may be remarkably rapid. Indeed, the solutions (7.7) represent a dramatic 
‘explosion’ of wave energy, which within the limits of the approximations 
becomes indefinitely large in a finite time. 

Clearly, if one pair of oblique waves grows particularly rapidly these waves 
will impart their characteristic spanwise periodicity to the disturbance and 
subsequent non-resonant interactions of the Lin-Benney type will result in 
correspondingly spaced secondary longitudinal-vortex flows. It is instructive to 
examine the experimental results of Klebanoff, Tidstrom & Sargent in the light 
of this hypothesis. However in doing so it should be borne in mind that the 
experimental observations relate to spatial instability, whereas the present 
theoretical model concerns only temporal growth. 

It was shown in $ 2  that resonant triads of the desired kind may occur among 
Tollmien-Schlichting waves in the unstable Blasius boundary layer. In  the 
experiments of Klebanoff et a,?. such a boundary layer was given an artificial 
disturbance of prescribed frequency by means of a vibrating ribbon. This dis- 
turbance, though predominantly two-dimensional, possessed small spanwise 
variations in intensity, owing to the presence of small pieces of tape spaced at  
equal distances on the flat plate under the vibrating ribbon. As the disturbance 
developed downstream its three-dimensionality rapidly intensified until transi- 
tion to turbulence ultimately occurred. A notable feature of the non-linear 
development was that, even close to the point of breakdown to turbulence, the 
harmonic content of the disturbance remained remarkably low. In  particular the 
(largest) harmonic with frequency twice that of the initial disturbance contributed 
only about 20 % of the streamwise velocity fluctuation just before breakdown, 
but the disturbance was markedly three-dimensional long before this stage was 
reached. Accordingly, the rapidly growing three-dimensional disturbances have 
in the main the same frequency as the initial disturbance. Linear theory cannot 
convincingly account for the fact that such three-dimensional waves grow more 
rapidly than the two-dimensional component of the initial disturbance but the 
present non-linear model suggests an attractive physical explanation. 

Of all possible three-dimensional waves with the given frequency there is one 
pair of obiique waves which will form a resonant triad with a two-dimensional 
wave of twice that frequency. This case is examined in $ 2  for a Reynolds number 
of 882 and a frequency close to that of the most unstable linear disturbance. 
It is shown there that this pair of oblique waves have wave-number components 
a = 0.23, p = i- 0.23, which correspond to a propagation angle of in. The span- 
wise periodicity of such waves is therefore equal to the x wavelength of the 
disturbance. 
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The experiments of Klebanoff et al. were mainly carried out at the greater 
Reynolds number (at the vibrating ribbon position) of 1635 and with an imposed 
disturbance of frequency 145 c/s. A two-dimensional disturbance at  this fre- 
quency has a 2: 0.225, c, 21 0-34 and a dimensional wavelength of 1-5 in. Now, 
an examination of the results of linear stability theory (those supplied by Dr R. 
Jordinson being used by the present author) reveals that at  R = 1635 a two- 
dimensional Tollmien-Schlichting wave with just twice this frequency is that 
with a = 0.4, c, = 0.38. Further, the construction of a diagram similar to that of 
figure 2 for R = 1635 shows that there exists a resonant triad with wave-numbers 
a = 0.4, /3 = 0 and a! = 0 . 2 , 1 =  0.33, a t  which the oblique waves have the same 
frequency as the vibrating ribbon. The wave-number component 1 = 0.33 is such 
that the spanwise spacing of the ‘peaks ’ of a three-dimensional disturbance 
(comprising two such oblique waves of similar amplitude and a two-dimensional 
wave of the same frequency) is 1.0 in. This is precisely the artificially induced 
spacing in the experiments of Klebanoff et al. (1962, figure 2). It appears that 
by coincidence the initial three-dimensional disturbances in this cam were 
just those most susceptible to resonance of the present kind. 

The observation (Klebanoff et al. 1962, figure 6) of a tendency for the distur- 
bance to double in frequency in the ‘valleys’, i.e. at the positions where the 
phases of the two- and three-dimensional disturbances are such that there 
combined amplitude is a minimum, is consistent with the proposed explanation. 
For, a small wave component of twice the basic frequency is required by the 
present model to form a resonant triad with the two oblique waves, and this 
component would be most easily detected at  positions where the two- and three- 
dimensional waves with the basic frequency are in anti-phase. 

However other (less detailed) observations by Klebanoff et al. (1962, figure 13) 
for an initial disturbance of frequency 65 c/s at  Reynolds numbers of 1635 and 
1270 at the vibrating ribbon position do not give such agreement. At this fre- 
quency a resonant triad equivalent to that just proposed yields a spanwise 
spacing of several inches, whereas the observed artificially-induced spacing is 
again 1 in. 

It must be conceded, therefore, that the present model is hardly adequate for 
this experimental situation. But this is not surprising since the condition (6.1 b)  
is violated for the disturbances introduced by the vibrating ribbon. These 
disturbances are much too large for the present theory to apply so it is possible 
that higher order effects may govern their non-linear development. On the other 
hand, in the early stages of natural transition the present model may be more 
directly relevant, but the developing disturbance may then comprise many 
resonant wave tria.ds such that no definite spacing will occur. Also, in the experi- 
ments of Klebanoff et al. condition ( 6 . 1 ~ )  was not particularly well satisfied: 
for example, the value of (aR)i for a 145 c/s wave a t  R = 1635 is about 7-2. At 
such values asymptotic linear theory still yields surprisingly good agreement 
with experiment. It remains to be seen whether the present non-linear theory 
may also provide reasonable approximations in such circumstances. 

Finally, we give an a posteriori justification for choosing resonant wave triads 
of the particular form studied here. As shown above, the oblique waves of such 
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triads have interaction coefficients which are O(R). Essentially, these large 
coefficients derive from the fact that the critical layers of all three waves coincide 
a t  z,. For, near zc, the inviscid estimates for the dominant terms (q530&+.,,,) of 
the respective integrands on the right-hand side of (3.7 b )  behave like ( z  - z J - ~ ,  
of which a factor ( z  - 2,)-3 derives from 
AS explained in $4, it is not then possible to deform the path of integration so 
as to pass either under or over the singularity a t  z, since the inviscid estimates 
do not all remain valid on any such contour. The subsequent examination of the 
viscous solutions near z, led to evaluation of the O(R) contributions to  the 
integrals. For the two-dimensional wave, on the other hand, the inviscid esti- 
mates of the integrand on the right-hand side of ( 3 . 7 ~ )  remain valid on a contour 
passing beneath the singularity at z, and the corresponding integral is O(1) in 
magnitude. 

For any other resonant wave triads the critical layers for all these waves will 
not coincide. Consequently the inviscid estimates for ef”, a,*”, $3 will become 
singular at the different levels zl, z2, z3 say. It is then possible to deform the paths 
of integration to pass either under or over the respective singularities a t  zl, z2, z3 
in such a way that the inviscid estimates for the integrands remain valid. As a 
result, these integrals will turn out to  be O(1) in magnitude and correspond to 
much weaker interactions than those for the oblique waves examined here. The 
present choice of wave triads has therefore focused attention upon the strongest 
possible resonant interactions, and such triads will comprise those waves most 
susceptible to rapid amplification. 

In  summary it may be said that the present analysis has revealed the existence 
of a particularly strong second-order resonance among waves in a shear flow. 
This has been discussed with particular reference to Tollmien-Schlichting waves 
in an unstable boundary layer but the basic analysis is applicable to  any shear 
flow at large ReynoIds numbers in which suitable wave triads may exist. The 
strength of such resonant interactions is much greater than might be anticipated 
owing to the remarkably large interaction coefficients of order O(R). The resonant 
mcchanism can give rise to a systematic transfer of energy from the primary 
shear flow to the disturbance, and this mechanism favours the growth of parti- 
cular three-dimensional disturbances. Comparison of the theoretical results 
with existing experiments on the Blasius boundary layer is inconclusive and i t  
is hoped that this paper may stimulate further experimentred work with the aim 
of detecting the presence of such resonance. 

and a factor ( z  - zc) derives from 

I amgrateful to Dr R. Jordinson of Edinburgh University for making available 
to me the results of his computations on the stability of the Blasius boundary 
layer and to  a referee whose criticisms of an earlier draft have led to improve- 
ments in this paper. 
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